Mogamulizumab, a defucosylated anti-CCR4 humanized monoclonal antibody, in ATL, PTCL and CTCL

Michinori Ogura, MD, PhD Department of Hematology/Oncology Kasugai Municipal Hospital, Japan

Bologna, Royal Hotel Carlton October 2, 2018

Disclosures of Michinori Ogura MD, PhD

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
SymBio	v						
Celltrion	v					v	
Takeda					v		
Janssen Pharma					v		
Celgene					v	v	
AstraZeneka					v		
Mundipharma						v	
MeijiSeika Pharma						v	

Mogamulizumab (KW-0761)

- A first-in-class defucosylated humanized anti-CCR4 monoclonal antibody
- Highly potent antibody dependent cellular cytotoxicity (ADCC) activity
- No neutralizing activity, no complement dependent cytotoxicity (CDC) activity, no direct apoptosis induction
- CCR4 is G protein-coupled receptor for macrophage-derived chemikine and thymus(MDC) and activation–regulated chemokine (TARC)
- CCR4 is over-expressed in ATL, PTCL and CTCL
- Approved in Japan for treatment of relapsed/refractory CCR4+ ATL or CTCL in 2012, for CCR4+ relapsed/refractory PTCL in 2014 and for relapsed/refractory CTCL without relation to CCR4 positivity in 2018

Shinkawa et al, J Biol Chem 2003;278:3466

Ishii et al, Clin Cancer Res 2010;16:1520

CCR4 expression and prognosis of PTCL/CTCL

Ohshima et al, Int J Oncol 2004;25:605 modified

Phase II Study of KW-0761 in Relapsed ATL (0761-002 Pivotal Phase II study) A multicenter single arm open label study

Dosing and assessment schedule

Primary endpoint: Best overall response rate (ORR)

Ishida T, Ogura M, et al. J Clin Oncol. 2012;30:837

Efficacy Assessment* (n=26**) (0761-002 Phase II study)

		E	Best res	spon	se		Respon	ise rate
Disease Site	n	CR ***	PR	SD	PD	NE	≥PR (%)	[95%CI]
Blood	13	13	0	0	0	0	13 (100)	-
Skin	8	3	2	0	2	1	5 (63)	[25-92]
Nodal & extranodal	12	3	0	4	5	0	3 (25)	[6-57]
Overall	26	8 (31%)	5 (19%)	2	11	0	13 (50)	[30-70]

* According to the 2009 criteria (Tsukasaki , et al. J Clin Oncol . 2009;27:453)
** One pt with concurrent colon cancer was excluded
*** Includes CRu

50% of ORR (95%CI 30-70) met the primary endpoint. (Lower limit of the 95%CI > 5%)

Ishida T, Ogura M, et al. J Clin Oncol. 2012;30:837

Clinical efficacy of KW-0761

Ishida T, Ogura M, et al. J Clin Oncol 2012;30:837

Drug Related Adverse Events (AEs) (n=27) by CTCAE v3.0 (0761-002 Phase II study)

	F	Pts af	fected, n		P	'ts af	fected, n
Non-Hematologic	Gra	ade		Hematologic	Gr	ade	- All Grades
AEs	3	4	- All Grades	AEs	3	4	
infusion reaction	1	0	24 89%	Lymphopenia**	9	11	26
Rash	5	0	17 <mark>63%</mark>	Leukocytopenia	8	0	18
ALT increased	2	0	11	Thrombocytopenia	3	2	14
AST increased	2	0	10	Neutropenia	5	0	14
Hypoxemia	3	0	5	Hemoglobin decreased	1	0	8
γ-GTP increased	3	0	4				
Pruritus	1	0	4				
Hypokalemia	2	0	3				
Hypercalcemia	0	1	3				
Erythema multiforme*	1	0	1				
Hyperglycemia	1	0	1				
Tumor lysis syndrome	1	0	1				
Metabolic/Lab-other (LDH etc.)	3	0	14				

*Stevens-Johnson syndrome

Ishida T, Ogura M, et al. J Clin Oncol. 2012;30:837

Summary of Phase II Study of KW-0761

- Most common AEs: infusion reaction and rash as well as hematologic ones such as lymphopenia, thrombocytopenia and neutropenia
- Grade 3 rash: Observed in 5 pts. But, they disappeared or improved by steroid treatments

ORR: <u>50% (13/26; 95% CI, 30 – 70%)</u>

median PFS, 5.2 months; median OS, 13.7 months

Conclusion:

KW-0761 is an effective agent with acceptable toxicity profiles for pts with relapsed ATL, in which no standard therapy exists. Further investigations are warranted.

Ishida T, Ogura M, et al. J Clin Oncol 2012;30:837

Randomized Phase II study design in newly diagnosed ATL

Ishida T. et al. Br J Haematol. 2015 169:672-82.

CR rate and ORR

	mLSG15 + Mogamulizumab (n=29)	mLSG15 (n=24)
CR	9	5
CRu	6	3
PR	10	10
Number of complete responders	15	8
CR rate (95%CI)	52% (33~71)	33% (16~55)
Number of responders	25	18
ORR (95%CI)	86% (68~96)	75% (53~90)

Ishida T, et al. Br J Haematol. 2015 169:672-82.

PFS and OS

		Kaplan-Meier	estimate			Kaplan-Meier	estimate
Group	N	Median PFS (days)	(95%CI)	Group	N	Median OS (days)	(95%CI)
mLSG15 + Mogamulizumab	29	259	(197, -)	mLSG15 + Mogamulizumab	29	-	(332, -)
mLSG15	24	192	(147, -)	mLSG15	24	-	(389, -)

Ishida T, et al. Br J Haematol. 2015 169:672-82.

Conclusions

Mogamulizumab with mLSG15

- Higher in CR rate than mLSG15 (52% vs 33%).
- Well tolerated.
- Skin disorders were more frequent, but manageable.
- A reasonable treatment option for newly diagnosed aggressive ATL.
 - Further investigation is needed because of the small sample size and short follow-up period of this study.

Phase II study (0761-004) design in relapsed PTCL

Multicenter open labeled study in Japan

- Primary endpoint:

Best overall response rate (ORR)

- Secondary endpoints:

Progression-free survival (PFS), Overall survival (OS), Best response by disease lesion

-Others:

Adverse events, Anti-mogamulizumab antibody, Pharmacokinetics (PK) Ogura M, et al. J Clin Oncol. 2014 32:1157-63.

Efficacy assessment* (n=37)

lumphoma Subtura	NI	B	Sest Re	esponse			
	IN	CR	PR	SD	PD		/ [95% CI]
PTCL	29	5	5	9	10	34	[18-54]
PTCL-NOS	16	1	2	6	7	19	
AITL	12	3	3	3	3	50	
ALCL ALK(-)	1	1 (CRu)	0	0	0	100	
CTCL	8	0	3	4	1	38	[9-76]
MF	7	0	2	4	1	29	
C-ALCL	1	0	1	0	0	100	
Total	37	5	8	13	11	35	[20-53]

*Evaluated by Efficacy Assessment Committee

Ogura M, et al. J Clin Oncol. 2014 32:1157-63.

Ogura M, et al. J Clin Oncol. 2014 32:1157-63.

Adverse events* (n=37) *Possibly/probably/definitely drug-related

	Pati	ents a	affected	I, N		Patie	nts a	ffected	I, N
Non-Hematologic	Gra	ade			Hematologic	Gra	de		
AEs	3	4		ades	AEs	3	4		aues
Pyrexia	0	0	11	30%	Ivmnhonenia	16	11	30	81%
ALP increased	1	0	8	22%	Lymphopenia	10	(30%)	50	01/0
ALT increased	1	0	8	22%	Leukocytopenia	3	2	16	43%
Phosphorus	1	0	6	16%	Leakeeytepenia	5	(5%)	10	1070
decreased	Ŧ	U	0	1070	Neutropenia	4	3	14	38%
Hypokalemia	1	0	2	5%			(8%)		
Secondary	0	1	1	3%	Thrombocytopenia	0	1	14	38%
malignancy +	0	T	Ŧ		Anemia	1	1	5	14%
Herpes oesophagitis	1	0	1	3%	Febrile	1	0	1	3%
Infection	1	0	1	3%	Neutropenia	-	Ľ	-	0,0
Oral candidiasis	1	0	1	3%	In another phor		. du fo	n nolom	
Pneumonia	1	0	1	3%	in another phas	se il su	Jay Io	r reiap:	sea
Polymyositis	1	0	1	3%	AIL,	vere ol	hsorva	nd in 67	10/2
Skin disorders	4 _{+ D}	iffuse la	rge 19 cell	51%	\leq (18/27) patient	s.	030100		/0
Acute Infusion reaction	0 ^{lym}	nphoma 0	9	24%					

Fifteen severe adverse events were observed in 8 patients.

Ogura M, et al. , JCO 2015, 32 : 1157

Conclusions

- All of 37 pts received 1.0 mg/kg of mogamulizumab were evaluable for efficacy analysis.
- 35% of ORR (13/37; 95% CI, 20% 53%) met the primary endpoint defined as the best ORR .
- Median PFS was 3.0 months and median OS has not yet reached.
- Most common adverse events were skin disorders, acute infusion reaction, pyrexia and hematologic toxicities.
- Grade 3 rash was observed in 4 pts. However, they were recovered or recovering by steroid-treatments.

Mogamulizumab is an effective agent with acceptable toxicity profiles for pts with relapsed PTCL and CTCL.

Phase II Study of KW-0761 in CCR4 + r/r PTCL in EU Zinzani PL, et al., Haematologica. 2016;101:e407-e410.

Mogamulizumab dosing

- 1.0 mg/kg, iv
- Day 1, 8, 15, 22 of cycle 1
- Day 1 and 15 of subsequent cycles
- Until PD or study withdrawal.

Overall Response by Histological Subtype

Best Overall Response by Histological Subtype	Number of Subjects	CR/PR N (%)	SD N (%)	≥SD N (%)
PTCL-NOS	15	2ª (13%)	6 (40%)	8 (53%)
AITL	12	2 (17%)	3 (25%)	5 (42%)
TMF	3	0	1 (33%)	1 (33%)
ALCL-ALK neg	4	0	2 (50%)	2 (50%)
ALCL-ALK pos	1	0	0	0
Efficacy Evaluable Subjects	35	4 (11%)	12 (34%)	16 (46%)

a: One patient had CR by CT scan but did not have bone marrow done for confirmation of CR.

[N.B.: 3 subjects did not have post-baseline assessment for efficacy]

Comparison of Phase II studies in Japan and EU

	P-2 in Japan	P-2 in EU
PS 2	0.4%(1/37) *	39%(15/38)
Median No. of previous systemic therapy	2 (1-6)	2 (1-8)
Refractory to last systemic therapy	0% (not eligible)	45% (17/38)
Schedule of Moga* administration	1 mg/week x 8 weeks	1mg/week x 4 weeks 1 mg/ 2 weeks from 5 th dose until PD
Median No. of administered Moga*	8	6

* Moga: mogamulizumab

Summary

- Mogamulizumab is an effective agent with acceptable toxicity profiles for patients with relapsed PTCL and CTCL in Japanese phase II study, and approved in patients with relapsed/refractory PTCL/CTCL in Japan.
- However,
 - Refractory patients were not included.
 - Sample size is small.
 - No randomized study
 - Although the reason is unclear, the efficacy was lower in a phase II study in EU against patients with relapsed/refractory PTCL.
- A large scaled randomized study will be needed.

KW-0761-010 : Phase III Trial for Cutaneous T Cell Lymphoma (the Phase III MAVORIC Study)

Primary objective: PFS

Status: Patient enrollment completed

Countries:

United States, Australia, Denmark, France, Germany, Italy, Japan, Netherlands, Spain, Switzerland, United Kingdom

ClinicalTrials.gov ID: NCT01728805

Kim YH, et al., Lancet Oncol. 2018, 19:1192-1204.

MAVORIC: PFS (Primary Endpoint)

- Significantly longer PFS with mogamulizumab vs vorinostat
 - Median PFS: 7.7 mos vs 3.1 mos; HR: 0.53 (95% CI: 0.41-0.69;
 P < .0001)
- PFS improved in most predefined pt subgroups

Group	PFS HR (95% CI)	P Value
ITT (n = 372)	0.53 (0.41-0.69)	< .0001
Female (n = 156)	0.62 (0.41-0.94)	.0275
Male (n = 216)	0.46 (0.33-0.65)	< .0001
< 65 yr of age (n = 188)	0.59 (0.41-0.85)	.0009
≥ 65 yrs of age (n = 184)	0.46 (0.31-0.68)	.0004
Mycosis fungoides (n = 204)	0.72 (0.51-1.01)	.0675
Sézary syndrome (n = 168)	0.32 (0.21-0.49)	< .0001
Stage IB/II (n = 140)	0.88 (0.58-1.35)	.7166
Stage III/IV (n = 232)	0.36 (0.26-0.51)	< .0001

Kim YH, et al., Lancet Oncol. 2018, 19:1192-1204.

MAVORIC:Conclusions

- Mogamulizumab significantly improved PFS, ORR vs vorinostat in pts with previously treated CTCL
 - Median PFS: 7.7 vs 3.1 mos; HR: 0.53 (95% CI: 0.41-0.69; P < .0001)</p>
 - ORR: 28.0% vs 4.8% (*P* < .0001)
- Pt-reported QoL outcomes improved with mogamulizumab
- Safety profile in this trial was similar to previous reports and common AEs were manageable
- Mogamulizumab could provide a new, effective treatment for patients with mycosis fungoides and, importantly, for Sézary syndrome

Kim YH, et al., Lancet Oncol. 2018, 19:1192-1204.

Possible Future Directions

- Combination of mogamulizumab with lenalidomide in PTCL
 - Ogura M, et al. Lenalidomide in relapsed ATL or PTCL. Lancet Haematol 2016; 3: e107-18
- Combination of mogamulizumab with PD-1 blockade in PTCL
 - CCR4 is expressed on CD45RA-FOX3highCD4+ effector regulatory T (Treg) cells
 - Treg cells involved in the tumor escape from host immunity in the tumor microenviroenment
- Sequential use of mogamulizumab followed by HDAC inhibitors in PTCL
- etc

Thank you for your attention

